
SUNMI

Barcode Scanner User Guide
SUNMI barcode scanner + keyboard component can avoid conflicts between a
handheld scanner and input method.
The introductions to USB barcode scanner and serial barcode scanner are listed
below:

USB Barcode Scanner Serial Barcode Scanner (Much Smaller)

1. USB Barcode Scanner
A USB barcode scanner functions like a USB keyboard, which can only collect data.
Two collection methods are available (alternative, please set according to your needs.
KeyEvent is used by default):
Method 1: KeyEvent. Use dispacthKeyEvent.
Method 2: Broadcast.While using this mode, data cannot be filled onto the input
box shown on the App interface like using a keyboard. Please switch receive mode
and collect data scanned through broadcast following the instructions below.

a. Switch Receive Mode:
Method 1: “Settings”->change “Barcode Scanning and Keyboard” into “Do Not

Output” + “Broadcast Output”
Method 2 (recommended):

action:com.sunmi.scanner.ACTION_BAR_DEVICES_SETTING
<p>field descriptions:
Key (*Required) Description Field Type
*name Device Name String (can be obtained by enumerating

the UsbDevice )
*pid Barcode Scanner pid Integer (same as above)
*vid Barcode Scanner vid Integer (same as above)
*type Data receiving mode Integer (see type descriptions below)
toast Whether to show

Toast debugging info
Boolen (false by default)

<p> name/pid/vid list:
Name pid vid

Synmbol Bar Code Scanner 0x1200 0x05E0
Point of Sale Fixed Barcode Scanner 0x2514 0x05F9
SM-S100W USB HID Keyboard 0x0022 0x324F



SUNMI

SM-S100W USB HID Keyboard 0x00C1 0x324F

<p> type descriptions:
0-->Keyboard.
1-->Barcode scanner. The data received will be directly shown on UI (KeyEvent) .
2-->Barcode scanner. The data received won’t be directly shown on UI (Broadcast
Mode).
3-->Barcode scanner, Acceleration Mode (data will be filled onto the input box at one
go. 1.0.18 is required).

<p>sample (set broadcast output for a device):
Intent intent = new Intent();
intent.setAction("com.sunmi.scanner.ACTION_BAR_DEVICES_SETTING");
intent.putExtra("name","Point of Sale Fixed Barcode Scanner.");
intent.putExtra("pid",9492);
intent.putExtra("vid",1529);
intent.putExtra("type",2); //1 KeyEvent output 2Broadcast output
intent.putExtra("toast",true);
context.sendBroadcast(intent);

b. Collect Data Scanned Through Broadcast
Listen to a broadcast: "com.sunmi.scanner.ACTION_DATA_CODE_RECEIVED"
Sample: private static fifinal String ACTION_DATA_CODE_RECEIVED =
"com.sunmi.scanner.ACTION_DATA_CODE_RECEIVED";
private static fifinal String DATA = "data";
private BroadcastReceiver receiver = new BroadcastReceiver()
{
@Override
public void onReceive(Context context, Intent intent)
{
String code = intent.getStringExtra(DATA);
if (code != null && !code.isEmpty())
{
mCode.setText(code);
}
}
};
private void registerReceiver()
{
IntentFilter fifilter = new IntentFilter();
fifilter.addAction(ACTION_DATA_CODE_RECEIVED);
registerReceiver(receiver, fifilter);
}



SUNMI

2. Serial Barcode Scanner

A serial barcode scanner is suitable for scanning screen barcodes, like payment
barcodes on phone screens or digital membership barcodes, etc. It supports KeyEvent
output and Broadcast output, so no mode switching or setting is needed.
Method 1: KeyEvent. Same as USB barcode scanner. Use dispacthKeyEvent.
Method 2: Broadcast. Same as USB barcode scanner. Use BroadcastReceiver.

In addition, commands can be sent through broadcast to control a serial barcode
scanner (for example, turn it on or off):

Serial Barcode Scanner Commands Manual
Serial Barcode Scanner SourcecodeDemo

The Way to Send Commands With Broadcast
action：com.sunmi.scanner.Setting_cmd
cmd byte[]：cmd_data: command + 2-digit check bit (check and computation)
Demo:
/*
**send serial command
*/
public void onSendSerialCmd(View view) {
try {
String s = “NLS0302010;”;//serial command, for example: NLS0302010;
byte[] bytes = s.getBytes();
byte[] cmd = new byte[bytes.length + 2];
System.arraycopy(bytes, 0, cmd, 0, bytes.length);
lrcCheckSum(cmd);
// send cmd
Intent intent = new Intent("com.sunmi.scanner.Setting_cmd");
intent.putExtra("cmd_data", cmd);
sendBroadcast(intent);
} catch (Exception e) {
e.printStackTrace();
}
}
private void lrcCheckSum(byte[] content) {
int len = content.length;
int crc = 0;
for (int l = 0; l < len - 2; l++) {
crc += content[l] & 0xFF;
}
crc = ~crc + 1;

https://file.cdn.sunmi.com/SUNMIDOCS/Programming_Guide_Based_on_Newland_Unified_Commands_Set_V1.0.2.pdf
https://file.cdn.sunmi.com/SUNMIDOCS/SunmiScannerDemo.zip


SUNMI

content[len - 2] = (byte) ((crc >> 8) & 0xFF);
content[len - 1] = (byte) (crc & 0xFF);
}

Common Commands:
a. “Sense mode” for common automatic scanning (default mode):
·“@SCNMOD2” sets the mode to “sense mode”. The barcode scanner scans

automatically in this mode.
·“@ORTSET$” sets waiting time. $ indicates time (ms). 1000 is recommended.
·“@RRDDUR$” sets the time interval between 2 scans of one barcode. $ indicates
time (ms). 800~1000 is recommended.
·“@SENIST$” sets the time interval between scans of different barcodes. $ indicates
time (ms). 200~400 is recommended. This command actually controls the time
interval between senses. It also applies to the scans of one barcode when the value is
larger than the value in “@RRDDUR$”.
b. “Trigger mode” for payment acceptance use:
·“@SCNMOD0” sets the “trigger mode”. In this mode, the barcode scanner is off by
default, and the command “trigger a scan” below needs to be sent to trigger one
scan.

·“#SCNTRG1” triggers one scan. Once a barcode has been scanned or in case a
timeout, it will be turned off.

·“#SCNTRG0” turns off scanning.
·“@ORTSET$” sets waiting time. $ indicates time (ms). 60000 is recommended.
c. Other Common Commands:
·“@TSUENA1” activates suffix.
·“@TSUSET0D0A” sets the suffix as carriage return/line feed.
·“@GRBENA1” enables the buzzer.


	2.Serial Barcode Scanner

